Selective Synthesis of Light Olefins from CO and H₂ with Na[Ru₃H(CO)₁₁] Supported on Metal Oxides

Catalytic synthesis of low-molecularweight olefins from CO and H2 is of both commercial and academic interest in C₁ chemistry. The addition of potassium to Fe and Ru catalysts has long been recognized to enhance the selectivity toward olefinic hydrocarbons in the Fischer-Tropsch synthesis (1, 2). Potassium, however, facilitates the sintering of metal crystallites, leading to a decrease in the catalytic activity. An approach to this problem seems to be the preparation of a highly dispersed Fe and Ru with potassium on the surface of supports. McVicker and Vannice (3) demonstrated that a highly dispersed Fe/K catalyst prepared by thermal decomposition of K₂Fe(CO)₄ on Al₂O₃ was active and selective for the formation of C_2 - C_4 olefins (50%). Commercue et al. (4) found that $HFe_3(CO)_{11}$ on Al_2O_3 gave rise to an unusual high selectivity (45%) for propene formation at the initial stage of the hydrogenation of CO. Recently, Hemmerich et al. (5) showed that $[HFeCo_3(CO)_{12}]^-$ anchored to ammonium-functionalized silica produced selectively olefinic hydrocarbons of C_2 - C_{19} with a high activity during the hydrogenation of CO. Okuhara et al. (6) found that a highly dispersed Ru/K catalyst on Al₂O₃, prepared from Ru₃(CO)₁₂ in the presence of K₂CO₃, was much more active and selective for C_2 – C_6 olefins (75%). In this note we report that a sodium-anionic triruthenium cluster Na[Ru₃H(CO)₁₁], supported on metal oxides such as TiO2 and MgO and thermally decomposed under vacuum, selectively yields light C₂-C₅ olefins (69-75%) at 270°C with a high catalytic activity. In addition, a strong support effect on the selectivity in the Fischer-Tropsch synthesis is explored by an X-ray photoelectron spectroscopic (XPS) analysis of the supported Na[Ru₃H(CO)₁₁] catalysts.

Na[Ru₃H(CO)₁₁], which had been prepared according to the method of Johnson et al. (7), was supported by evaporating the methanol solvent at 30°C from a suspension of metal oxide in the methanol solution of $Na[Ru_3H(CO)_{11}]$. SiO₂ (Davison 952, 350 m^2/g), γ -Al₂O₃ (Nishio, 150 m^2/g), MgO (Wako, 93 m²/g), and TiO₂ (Koso, 40 m²/g) were dried under vacuum (10⁻⁴ Torr) at 300-350°C for 20 h and used as supports. The supported catalysts were activated by heating to 400°C under vacuum. The content of Ru in the catalysts was 20 mg per g of catalyst. The hydrogenation of CO was carried out in a closed circulating glass reactor (total volume 240 cm³) operating in a continuous circulating flow mode. The products other than methane were collected in a trap kept at liquid-nitrogen temperature to suppress secondary reactions. Analyses of the products were based on gas chromatographs using Porapak Q (2 m) and VZ-10 (3 m) for hydrocarbons and active carbon (2 m) for CH₄, CO, CO₂, and H₂. The catalytic activity and selectivity were determined after attainment of a stationary rate.

The XPS spectra of supported catalysts were recorded on a Shimadzu electron spectrometer ESCA 750 with MgK α excitation radiation. Sample preparation for XPS measurements was performed in a glove box filled with nitrogen. The C (1s) line (E_b = 284.5 eV) of the adsorbed diffusion pump oil was used as standard peak.

294 NOTES

TABLE 1
Activities and Selectivities in Hydrogenation of CO over Na[Ru ₃ H(CO) ₁₁] Supported on Various
Metal Oxides"

Support	Temp. (°C)	Rate ^b	S(CO ₂) ^c	Product distribution in hydrocarbons ^d									Fraction of olefins (wt%)
				C_1^-	C_2^-	C_2^{2-}	C_3^-	C_3^{2-}	C_4^-	C_4^{2-}	C_5^-	C_5^{2-}	((////
SiO ₂	270	3.6	3	72	14	1	7	3	2	1	0	0	5
Al ₂ O ₃	270	5.6	2	31	12	8	4	24	2	13	1	5	50
MgO	270	1.7	31	22	6	14	2	33	ŧ	17	0	5	69
TiO,	270	1.1	25	18	3	18	2	30	2	20	0	7	75
TiO ₂	300	2.3	23	22	4	22	1	28	1	16	0	6	72
TiO ₂	330	3.7	35	32	5	29	1	26	0	6	0	1	62
TiO ₂	360	8.0	36	38	7	30	1	19	0	5	0	0	54

^a Reaction conditions: CO + H_2 = 400 Torr, H_2/CO = 2, catalysts = 0.4 g.

Table 1 lists the results of CO hydrogenation performed at an initial pressure of 400 Torr $(H_2/CO = 2; 1 \text{ Torr} = 133.3 \text{ N m}^{-2}).$ The activity and selectivity at 270°C for the formation of hydrocarbons depended strongly upon the type of support used. The activity decreased in the order: $Al_2O_3 >$ $SiO_2 > MgO > TiO_2$. Also, the selectivity toward olefinic C₂-C₅ hydrocarbons changed drastically among the supported Na[Ru₃H(CO)₁₁] catalysts and decreased in the order: $TiO_2 > MgO > Al_2O_3 > SiO_2$. The Na[Ru₃H(CO)₁₁] on TiO₂ and MgO exhibited a high selectivity (69 \sim 75%) for the formation of C₂-C₅ olefins at 270°C and showed a narrow product distribution which deviated from the Schulz-Flory distribution (8). In contrast, the ordinary Schulz-Flory product distribution was observed with the Na[Ru₃H(CO)₁₁] on SiO₂ which gave a low selectivity (5%) for olefin formation. As shown in Table 1, the selectivity for the formation of C_2 - C_5 olefins over the Na[Ru₃H(CO)₁₁]/TiO₂ somewhat decreased with rising reaction temperature from 270 to 360°C. An apparent activation energy for the rate of CO hydrogenation was determined as 16 kcal mol⁻¹.

The recent work of Pierantozzi et al. (9) has also demonstrated that the nature of

metal oxide support has a significant influence on the product distribution in CO hydrogenation over the catalysts derived from $Ru_3(CO)_{12}$ on metal oxides (Al_2O_3) and MgO).

A strong support effect on the selectivity in the Fischer-Tropsch synthesis over the sodium-anionic triruthenium cluster was investigated by XPS spectroscopy. The Ru $3d_{5/2}$ peak in the XPS spectrum of Na[Ru₃H(CO)₁₁] on SiO₂ shifted from 280.2 to 279.9 eV after decarbonylation. The decarbonylated NaRu₃ on MgO and TiO₂ gave the Ru $3d_{5/2}$ peak (279.3 eV) at lower binding energies than that (279.9 eV) on SiO₂, confirming that Ru atoms on MgO and TiO₂ are more electron-rich than those on SiO₂. Thus, the electronic structure of Ru atoms is drastically influenced by the metal oxides used as supports.

In conclusion, an electron-rich ruthenium cluster produces selectively light olefins in the C_2 - C_5 range from CO and H_2 . The use of $Na[Ru_3H(CO)_{11}]$ as catalyst precursor offers a simple method for the preparation of highly active and selective Fischer-Tropsch catalyst.

ACKNOWLEDGMENT

We gratefully acknowledge the contribution of Mr. N. Tomotsu in obtaining the XPS spectra.

^b Rate is represented by mol CO \cdot mol Ru⁻¹ \cdot h⁻¹.

^c Selectivity to CO₂ = 100 × $N(CO_2)/[\Sigma\{nN(C_n^-) + nN(C_n^{2-})\} + N(CO_2)]$.

^d Percentage of C_n^- (paraffin) or $C_n^{2^-}$ (olefine) = $100 \times nN(C_n^-)$ or $nN(C_n^{2^-})/2\{nN(C_n^-) + nN(C_n^{2^-})\}$, where $N(C_n^-)$ = molecules of paraffin with n carbon atoms, and $N(C_n^{2^-})$ = molecules of olefin with n carbon atoms.

NOTES 295

REFERENCES

- Storch, H., Golumbic, H., and Anderson, R. B., "The Fischer-Tropsch and Related Syntheses." Wiley, New York, 1951.
- Frohning, C. D., in "New Syntheses with Carbon Monoxide" (J. Falbe, ed.), p. 309. Springer-Verlag, Berlin, 1980.
- McVicker, G. B., and Vannice, M. A., J. Catal. 63, 25 (1980).
- Commereuc, D., Chauvin, Y., Hugues, F., Basset, M., and Oliver, D., J. Chem. Soc. Chem. Commun., 154 (1980).
- Hemmerich, R., Keim, W., and Röper, M., J. Chem. Soc. Chem. Commun., 428 (1983).
- Okuhara, T., Kobayashi, K., Kimura, T., Misono, M., and Yoneda, Y., J. Chem. Soc. Chem. Commun., 1114 (1981).
- Johnson, B. F. G., Lewis, J., Raithby, P. R., and Süss, G., J. Chem. Soc. Dalton Trans., 1354 (1979).

- Henric-Olivé, G., and Olivé, S., Angew. Chem. Int. Ed. Engl. 15, 136 (1976).
- Pierantozzi, R., Valagene, E. G., Nordquist, A. F., and Dyer, P. N., J. Mol. Catal. 21, 189 (1983).

Yoshiharu Doi Hiroto Miyake Atsushi Yokota Kazuo Soga

Research Laboratory of Resources Utilization Tokyo Institute of Technology Nagatsuta, Midori-ku Yokohama 227, Japan

Received April 4, 1984